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Motivation

Measurement error occurs when the measured value of a quantity of interest is different

than the true, unknown value.

A measurement error model directly accounts for this error in the independent variable,

and not just the response variable as in a traditional statistical model.

Measurement errors are very common across the medical field when exact values cannot

be calculated.

While existing works incorporating measurement error models into regression settings are

common, less work has been done incorporating measurement error into more robust and

flexible models.

Bayesian Additive Regression Trees (BART) is an ensemble decision tree model, similar to

the random forest or boosted decision trees model, that uses multiple learners to each

explain a small portion of the variance of the output data to achieve good predictive

performance (Chipman et al., 2010).

In this work, we develop an extension to the BART model that directly incorporates

measurement error in the independent variable(s), which we call meBART.

Background

The standard BART model assumes that data {(xi, yi) : i = 1, . . . , n} are IID and generated

according to some unknown function f such that:

yi = f (xi) + εi εi ∼ N (0, σ2) (1)

The goal of BART is to estimate the conditional mean E[yi|xi] by a sum of m decision trees,

f (xi) =
m∑

h=1
g(xi; Th, Mh). An example decision tree is shown below in Figure 1.

Figure 1. An example of a binary decision tree and its corresponding partition of the data space. Taken from (Hill

et al., 2020).

Th represents the set of decision rules that govern the h’th tree and Mh is the set of leaf node

values at the bottom of the h’th tree. This yields the likelihood:

p(yi|Th, Mh, σ) = N
( m∑

h=1

g(xi; Th, Mh), σ2
)

(2)

We also assume that the model variance is independent of the trees, that trees are independent

from one another, and that the leaf nodes within a tree are independent. This yields the

following prior distribution:

p((T1, M1), . . . , (Tm, Mm), σ) =
[ m∏

h=1

p(Mh|Th)p(Th)
]
p(σ) (3)

p(Mh|Th) =
bh∏

t=1
p(µht|Th) (4)

The full posterior can then be estimated using a Metropolis-Hastings-within-Gibbs sampler,

where each tree is updated according to a Bayesian backfitting algorithm.

Methods

We extend the vanilla BART model by assuming that the independent variable xi is measured

with error such that:

xi,measured = xi,true + ei ei ∼ N (0, σ2
e) (5)

The proposed model is thus a Bayesian hierarchical model, where the response variable yi

depends on the unobserved, true latent value xi,true. This value is an additional parameter

in the model, and can be inferred alongside the normal tree model parameters. To do so,

we place a normal prior on the measurement error, and assume that the variance of the

measurement error is known. Finally, we estimate xi,true via an additional Metropolis-Hastings

step within the standard BART MCMC. By directly estimating xi,true, we hope to both learn

this underlying value and achieve better predictive performance on unseen test data.

Results

Synthetic data were generated according to X ∼ Unif(0, 1) and the true underlying step

function:

f (x) = 1[0.5,∞)(x) (6)

This step function can be thought of as a decision tree with one layer. IID N (0, 0.12) measure-
ment error was added to both X and y variables. Shown below in Figure 2, meBART achieves

a smoother mean function with 95% credible intervals that fully capture the true underlying

function.

Figure 2. The posterior mean prediction values of vanilla BART and meBART (plotted as black dotted lines) along

with their respective 95% credible intervals (the gray shaded regions).

In traditional BART, the mixing of σ is taken as a proxy for the quality of mixing for the other

parameters and overall quality of the fitted model. Shown below in Figure 3, meBART achieves

a posterior distribution much closer to the true underlying value than that of vanilla BART.

Figure 3. Posterior trace plots of σ. The true underlying value is shown as a black dashed line.

Discussion

We show that in the presence of measurement error, our model allows for much better

recovery of the true underlying function and more accurate estimation of model parameters.

Going forward, we are actively investigating multivariate and more complex functions with

measurement error. We also are exploring various real life datasets that would benefit from

having measurement error modeled.
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