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Introduction

The Classification and Regression Tree (CART) [1] is perhaps the most popular

decision tree algorithm used in machine learning. Though all decision trees are

weak predictors by themselves, they have shown to perform incredibly well when

used in an ensemble, as in a random forest or boosted tree model.

Decision trees and their extensions are tolerant of missing data, interpretable,

and robust against collinearity.

Some work has been done to incorporate mixed effects or longitudinal data into
CART [2, 3, 4]. However, existing methods have limitations in how they handle
clustered or hierarchical data.

For example, many methods use a rigid additive structure for the mixed effects, similar to a

linear mixed model, which takes away from the flexibility of decision trees.

Current methods are also only effective at predicting random effects for groups already seen in

training data and resort to using the global mean for out-of-sample prediction.

We propose a lightweight two stage model that first predicts the group

membership, and then uses a combination of trees to weight the prediction

towards similar training observations.

Through simulation studies, we highlight the potential of our method in a variety

of data settings.

Methods

Decision Tree Modification

Consider grouped non-i.i.d. data with k groups, n samples per group, and p
features. The tabular dataset is thus (k · n) × p, where each block of n samples is

generated from one group.

The proposed method is composed of three stages. See Figure 1 for a visual

explanation.

1. The first stage involves fitting a classification model, such as logistic regression or decision tree

classifier, with the group factor as the output.

2. The second stage involves training a decision tree on each group seen in the training data.

3. In the third stage we apply a mixture of trees such that the final output is a linear combination

of these group-specific trees with the group classification probabilities as the weights.

Generating Synthetic Test Data

In order to generate synthetic data, we employ the matrix normal distribution:

X ∼ MN k×p(M, U, V)

where M is a (k × p) location matrix, U is the (k × k) group covariance matrix,

and V is the (p × p) feature covariance matrix. This allows us the freedom to

specify a number of correlation structures between not only features, but also

groups in hierarchical settings. We generate n samples.

We construct a continuous output using:

yi,j = f (xi,j) + Zαj + ε

i ∈ {1, . . . , n}, j ∈ {1, . . . , k}

where Z is the random effects design matrix, αj is a random slope and intercept

shared by all observations within a group, and ε ∼ N (0, 0.52) is a shared noise

term. We generate αj ∼ MN (0, σα ∗ I), where I is the (p + 1 × p + 1) identity
matrix. We employ Friedman’s function [5], given below, for the fixed effects

function f .

f (xi,j) = sin(πx1x2) + 2(x3 − 0.5)2 + x4 + 0.5x5

Figure 1. (A) Consider grouped data such that each training observation falls into some group (e.g.

patients with multiple observations). The test data are similarly structured but come from new

groups not seen in the training data. (B)We then construct a classifier that predicts the group that

each new observation belongs to, and extract the output group probabilities. (C) Finally, we

construct independent trees on each group seen in the training set. The final output is a linear

combination of the predictions from all of these trees with the probabilities from (B) as weights.

Results

Figure 2. Box and whisker plot of MSE values over a range of σα. Tests were performed over N=50

iterations. Data generated with n = 20 and k = 20.

Figure 3. Box and whisker plot of MSE values over a range of σα. Tests were performed over N=50

iterations. Data generated with n = 10 and k = 40.

Results

Figure 4. Box and whisker plot of MSE values over a range of σα. Tests were performed over N=50

iterations. Data generated with n = 40 and k = 10.

Discussion

The mixture of trees method provides consistent improvements over standard

trees when the random noise σα exceeds the common noise ε.

Furthermore, this result is shared across high, low, and intermediate n and k
settings.

The mixture of trees method also performs as well as random forests, even

though the method does not use any bootstrapping of observations or random

sampling of features.

Overall, our work shows that constructing decision trees and forests can be

improved when significant random effects are present without the need for rigid

model constraints.

In the future, we plan on investigating how this method translates to categorical

outputs as well as other fixed effects functions besides the Friedman function.

Finally, this work opens the door into how the random forest algorithm can be

altered to accommodate random effects. Initial findings suggest that this is

possible, but only at the expense of high variance in the model.
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